Aus der
Neurologischen Universitätsklinik
Freiburg im Breisgau

ZNS-Störungen bei Myotoner Dystrophie

Untersuchungen zu
Okulomotorik, Neuroradiologie und Neuropathologie

INAUGURAL - DISSERTATION
zur Erlangung des
Medizinischen Doktorgrades
der Medizinischen Fakultät
der Albert-Ludwigs-Universität
Freiburg im Breisgau

vorgelegt von
Manfred Petrick
geboren in Kenzingen

Freiburg im Breisgau 2001
<table>
<thead>
<tr>
<th>Rolle</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dekan</td>
<td>Prof. Dr. Dr. h.c. H. E. Blum</td>
</tr>
<tr>
<td>1. Gutachter</td>
<td>Prof. Dr. T. Mergner</td>
</tr>
<tr>
<td>2. Gutachter</td>
<td>Prof. Dr. B. Volk</td>
</tr>
<tr>
<td>Jahr der Promotion</td>
<td>2001</td>
</tr>
</tbody>
</table>
Meiner Frau Claudia gewidmet
<table>
<thead>
<tr>
<th>Inhaltsverzeichnis</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Einleitung</td>
<td>1</td>
</tr>
<tr>
<td>I.1 Definition der Myotonen Dystrophie</td>
<td>1</td>
</tr>
<tr>
<td>I.2 Ätiopathogenese</td>
<td>1</td>
</tr>
<tr>
<td>I.2.1 Molekulargenetische Hypothesen</td>
<td>2</td>
</tr>
<tr>
<td>I.3 Epidemiologie</td>
<td>3</td>
</tr>
<tr>
<td>I.4 Symptomatologie und klinischer Aspekt</td>
<td>4</td>
</tr>
<tr>
<td>I.4.1 Kongenitale Form</td>
<td>4</td>
</tr>
<tr>
<td>I.4.2 Adulte Form</td>
<td>4</td>
</tr>
<tr>
<td>I.4.3 Okuläre Manifestationen</td>
<td>6</td>
</tr>
<tr>
<td>I.4.4 Zentrale Defizite</td>
<td>6</td>
</tr>
<tr>
<td>I.4.5 Sonstige Manifestationen</td>
<td>6</td>
</tr>
<tr>
<td>I.5 Diagnostische Verfahren</td>
<td>6</td>
</tr>
<tr>
<td>I.5.1 Elektromyographie (EMG)</td>
<td>7</td>
</tr>
<tr>
<td>I.5.2 Molekulargenetische Analyse</td>
<td>7</td>
</tr>
<tr>
<td>I.5.3 Elektrokardiographie (EKG)</td>
<td>7</td>
</tr>
<tr>
<td>I.5.4 ZNS-Untersuchungen</td>
<td>7</td>
</tr>
<tr>
<td>I.5.5 Neuropsychologische Tests</td>
<td>8</td>
</tr>
<tr>
<td>I.6 Differentialdiagnose</td>
<td>8</td>
</tr>
<tr>
<td>I.7 Therapie</td>
<td>9</td>
</tr>
<tr>
<td>I.8 Verlauf</td>
<td>9</td>
</tr>
<tr>
<td>II. Grundlagen der ZNS-Diagnostik bei MD</td>
<td>10</td>
</tr>
<tr>
<td>II.1 Grundlagen der Okulomotorik</td>
<td>10</td>
</tr>
<tr>
<td>II.1.1 Physiologie</td>
<td>10</td>
</tr>
<tr>
<td>II.1.1.1 Blickfolgebewegungen (BF) und Fixation</td>
<td>10</td>
</tr>
<tr>
<td>II.1.1.2 Der Vestibulookuläre Reflex (VOR)</td>
<td>15</td>
</tr>
<tr>
<td>II.1.1.3 Fixationssuppression des VOR (VOR-Suppression, VOR-S)</td>
<td>15</td>
</tr>
<tr>
<td>II.1.2 Anatomie</td>
<td>15</td>
</tr>
<tr>
<td>II.1.3 Blickfolgestörungen bei sinusförmigen Blickfolgereizen</td>
<td>23</td>
</tr>
<tr>
<td>II.2 Neuroophtalmologische und okulomotorische Aspekte der MD</td>
<td>24</td>
</tr>
<tr>
<td>II.3 Neuroradiologische Befunde bei Myotoner Dystrophie</td>
<td>25</td>
</tr>
<tr>
<td>II.4 Pathologische Befunde bei Myotoner Dystrophie</td>
<td>27</td>
</tr>
<tr>
<td>II.5 Fragestellung</td>
<td>29</td>
</tr>
<tr>
<td>III. Methodik</td>
<td>30</td>
</tr>
<tr>
<td>III.1 Patienten- und Kontrollgruppe</td>
<td>30</td>
</tr>
<tr>
<td>III.2 Krankengeschichte des Patienten Nr. 12</td>
<td>31</td>
</tr>
<tr>
<td>III.3 Augenbewegungsmessung - Elektronystagmographie (ENG)</td>
<td>32</td>
</tr>
</tbody>
</table>
I. Einleitung

Ziel dieser Arbeit ist es mit einem interdisziplinären Ansatz, mithilfe moderner diagnostischer Verfahren, zu zeigen, dass den Augenbewegungsstörungen bei der Myotonen Dystrophie eine ZNS-Störung zugrunde liegt.

I.1 Definition der Myotonen Dystrophie

(syn. Morbus Steinert, Dystrophische Myotonie, Dystrophia myotonica, Curschmann-Batten-Steinert-Syndrom)

Die Myotone Dystrophie (MD) wurde von H. Steinert (1909) erstmals beschrieben. Sie ist eine autosomal dominant vererbte primär neuromuskuläre Multisystemdegeneration, die durch eine Verzögerung der Muskelrelaxation nach aktiver Muskelkontraktion (Myotonie), dystrophische Muskelveränderungen, eine leichte periphere Neuropathie, die Beteiligung des Zentralnervensystems (ZNS) und vielfältige Begleitsymptome wie Katarakte und Gonadenatrophie charakterisiert ist. In den nächsten Kapiteln wird detailliert auf diese Aspekte der Erkrankung eingegangen.

Man unterscheidet eine kongenitale und eine adulte Form.

I.2 Ätiopathogenese

Die unterschiedliche klinische Ausprägung und das Phänomen der Antizipation, d.h. den zu erwartenden zunehmend früheren Beginn und eine Verstärkung der Schwere der Krankheit von einer Generation zur nächsten, lassen sich durch eine Zunahme der Repeatlänge erklären. Die extremen Unterschiede der Klinik auch innerhalb untersuchter Familien, d.h. das gleichzeitige Vorkommen schwerster kongenitaler Formen, und Formen mit Minimalsymptomatik, sind ebenfalls durch die unterschiedlichen Repeatlängen erklärbar. Die längsten Repeatlängen (einige 1000 Kopien) werden bei kongenital erkrankten Kindern gefunden.

I.2.1 Molekulargenetische Hypothesen
können diese Veränderungen der Membranfunktion die charakteristischen elektromyographischen Befunde bei der MD erklären.

I.3 Epidemiologie
Die Prävalenz bei der klassischen adulten MD wird in der Literatur grössenordnungsmässig ähnlich angegeben. Die Autoren betrachteten jeweils geschlossene Populationen:

Nordirland: 2,4/100000 (Lynas, 1957)
Westdeutschland: 5,5/100000 (Grimm, 1975)
Schweiz: 4,9/100000 (Klein, 1958)
Zusammenfassend kann für die meisten europäischen und amerikanischen Regionen von einer Prävalenz von etwa 5 pro 100.000 Einwohner ausgegangen werden. Einige isoliert betrachtete Populationen zeigen eine auseergewöhnlich hohe Prävalenz für die MD, in einigen Fällen von einem einzigen von der Krankheit gering betroffenen Vorfahren, in einer sich schnell vergrößernden Gemeinschaft, ausgehend. Das bestdokumentierte Beispiel hierfür ist die Region Nord-Quebec in Kanada, wo die Prävalenz mit 189 pro 100.000 angegeben wird. Hier sind die sozialen und die medizinischen Effekte der Krankheit detailliert dokumentiert (Perron et al., 1986; Veillette et al., 1986).

I.4 Symptomatologie und klinischer Aspekt

I.4.1 Kongenitale Form

I.4.2 Adulte Form

Die führenden Symptome bei der *adulten Form* sind eine unterschiedlich ausgeprägte Muskelschwäche und -atrophie und die myotone Reaktion.

Die Myotonie ist klinisch charakterisiert durch eine, im Anschluß an eine willkürlich induzierte Aktivität, persistierende Kontraktion bzw. verzögerte Relaxation des Muskels. Sie kann auch mechanisch, durch Beklopfen z.B. des *M. opponens pollicis* geprüft (Perkussionsmyotonie), und durch direkte und indirekte elektrische Reizung ausgelöst werden. Die Myotonie wird subjektiv als Muskelsteifheit empfunden, die sich bei Kälte intensiviert. Objektiv zeigt sich ein verzögertes Öffnen der Augen nach kräftigem Lidschluß, oder die festgeschlossene Faust kann unter Umständen nicht rasch geöffnet werden. Mit zunehmender Wiederholung einer durch die Myotonie gestörten Bewegung lässt die myotone Reaktion nach (Warm-up-Phänomen).
Myotone Reaktionen kommen außer bei der Myotonen Dystrophie bei folgenden Krankheiten vor:

Myotonia congenita (dominant „Thomsen“, rezessiv „Becker“), Paramyotonia congenita (Eulenburg), Chondrodystrophische Myotonie (Schwartz-Jampel-Syndrom), Dyskaliämische Lähmungen (hypo-, normo- und hyperkaliämisch) sowie erworbene Myotonien. Außerdem finden sich gelegentlich leichte oder paramyotone Reaktionen bei der progressiven Muskeldystrophie, Myopathien mit saurem Maltasemangel, der Glykogenspeicherkrankheit ohne Maltasemangel, der zentronukleären Myopathie, dem kleinlappend Bronchialkarzinom und beim Myxödem.

Bei der MD kann die Myotonie schon vor oder zusammen mit der dystrophischen Muskelschwäche vorhanden sein. Von einzelnen Patienten wird die Myotonie jedoch nicht einmal bemerkt. Schwer dystrophisch veränderte Muskeln zeigen in der Regel keine Myotonie mehr.

Die Muskelschwäche und -atrophie betrifft vornehmlich die faziale und oropharyngeale Muskulatur, die Mm. temporales, die Kaumuskeln, die Mm. sternocleidomastoidei und Halsmuskulatur sowie die distalen Muskelgruppen der oberen und unteren Extremitäten. In fortgeschrittenen Krankheitsstadien befällt der dystrophische Prozess auch proximale Muskelgruppen. Meistens ist die Muskelatrophie im Bereich der distalen Extremitätenabschnitte sehr augenfällig.

Durch die faziale Muskelschwäche und Atrophie weisen viele Betroffene die für diese Erkrankung charakteristische „Facies myopathica“ auf: hohe Stirnglatze (83% der männlichen, 16% der weiblichen Patienten), spärliche und schlaffe Mimik mit Ptosis, hängender Unterkiefer und Schultern („Jammergestalt“). Der Kopf auf dem schlanken Hals mit den atrophischen Mm. sternocleidomastoidei ist nach vorn gebeugt. Die selten vorkommende Schwäche der palatalen und pharyngealen Muskulatur führt zu Speichelfluss, Schluckstörungen und einer dysarthrischen, nasalen und schleppend verlangsamen Aussprache. Mit zunehmendem Erkrankungsalter steigert sich die generelle Schwäche, die auch die Atemmuskulatur befallen und damit die Ventilation beeinträchtigen kann.

I.4.3 Okuläre Manifestationen

In bis zu 98 % der Fälle ist eine Katarakt festzustellen, außerdem sind pupillotonische Reaktionen nachweisbar. Oft besteht eine Minderung des intraokulären Drucks. Ferner kommen gelegentlich retinale Degenerationen, Hornhautläsionen und eine Blepharitis vor.

Okulomotorikstörungen siehe Kap. II.2

I.4.4 Zentrale Defizite

I.4.5 Sonstige Manifestationen

Oft besteht eine kardiale Beteiligung, die sich in Arrhythmien äußert (58-87 % der Fälle: AV-Block I°, Vorhofflattern, etc.); außerdem kommen vor: Kardiomyopathien, Mitralklappenprolaps, respiratorische Insuffizienz aufgrund einer alveolären Hypoventilation, gastrointestinalen Störungen, endokrine Störungen, Gonadenatrophiie (50-80%), Dysmenorrhoe (< 50%), Granulozyten-Dysfunktion und anästhesiologische Komplikationen (maligne Hyperthermie). Durch die Beteiligung der glatten Muskulatur sind die ösophagopharyngealen und gastrointestinalen Störungen erklärt: Aspiration, Obstipation, spastisches Kolon. Bei 40% der Patienten findet sich eine Cholelithiasis.

I.5 Diagnostische Verfahren

Richtungsweisend für die Diagnostik ist die charakteristische Klinik der Krankheit sowie die entsprechende elektrophysiologische Diagnostik. Weitere Aufschlüsse über die Art der Muskelerkrankung gibt die Familienanamnese. Gegebenenfalls sollten auch andere Familienmitglieder untersucht werden.
I.5.1 Elektromyographie (EMG)

Aus myoton reagierenden Muskeln lassen sich charakteristischerweise rhythmische hochfrequente, nicht willkürlich induzierte Entladungsserien verkürzter Potentiale mit wechselnder Amplitude, Fibrillationspotentiale und positive scharfe Wellen (Denervierungspotentiale) ableiten, die akustisch zu dem typischen „Sturzkampfbombergeräusch“ (Frequenz- und Amplitudenmodulation) führen.

I.5.2 Molekulargenetische Analyse

I.5.3 Elektrokardiographie (EKG)

Das EKG (bzw. 24-Stunden EKG) sollte Bestandteil jeder klinischen Untersuchung von Patienten mit MD sein. Wie schon in Kapitel I.4.5 beschrieben, sind Herzrhythmusstörungen häufig. Im EKG muß insbesondere auf AV-Blockbilder geachtet werden, da MD-Patienten mit AV-Block I° ein hohes Risiko für die Entwicklung zum kompletten AV-Block mit konsekutivem plötzlichem Herztod haben (de Die-Smulders et al., 1998).

I.5.4 ZNS-Untersuchungen

Ergänzend können noch bildgebende Verfahren wie z.B. die Magnetresonanztomographie (MRT) von Gehirn und Muskeln eingesetzt werden oder die Elektronystagmographie (ENG).

Auf beide Methoden und die typischen Befunde wird in dieser Arbeit ausführlich eingegangen.
I.5.5 Neuropsychologische Tests
Zur Exploration des neuropsychologischen Zustandes wird in der Literatur häufig auf folgende Tests hingewiesen: Reduzierter Wechsler-Intelligenztest (WIP) (Untertests: Allgemeiner Wortschatz, Bilderergänzen, Gemeinsamkeiten finden, Mosaiktest), d2-Test (Konzentrationsleistung unter Zeitdruck), Mini-Mental-State-Examination (MMSE) (kognitive Leistungen bei herabgesetztem IQ; verbale Gedächtnisleistungen) (Damian et al., 1995). Da viele Patienten über Depressionen klagen, und deren Angehörige psychische Auffälligkeiten bemerken, kann außerdem ergänzend ein psychopathologischer Befund erstellt werden.

I.6 Differentialdiagnose

Desweiteren sind andere neurologische Erbkrankheiten bekannt, deren Ursache Trinukleotidsequenzwiederholungen sind. Einhergehend mit einer Funktionssteigerung der kodierten Proteine (CAG/Polyglutamin-Vermehrung): das Kennedysyndrom (spinale und bulbäre Muskelatrophie), Morbus Huntington, spinocerebelläre Ataxie, und die dentatorubropallidoluysiale Degeneration. Es handelt sich dabei um neurodegenerative Störungen, bei denen das veränderte Genprodukt (Huntingtin, Ataxin) eine Aktivität verursacht, die neurotoxisch ist. Eine Krankheit, die mit einer Funktionsverminderung bzw. -verlust der kodierten Proteine auftritt, ist das fragile-X-Syndrom.
I.7 Therapie

Für die MD gibt es bislang nur symptomatische Therapieansätze, um zumindest die Beschwerden zu lindern, oder die allgemeinen Folgen der Krankheit zu mildern oder in ihrem Fortschreiten zu bremsen.

I.8 Verlauf

II. Grundlagen der ZNS-Diagnostik bei MD

Nachdem nun die grundlegenden klinischen Aspekte der Myotonen Dystrophie beschrieben wurden, soll ausführlich auf die zentralnervösen Aspekte der Krankheit eingegangen werden, wie Neuroophthalmologie, Neuroradiologie und Neuropathologie. Da der Fokus dieser Arbeit auf die Augenbewegungsstörungen bei der MD gerichtet ist, wird detailliert auf die physiologischen und anatomischen Grundlagen der Okulomotorik eingegangen.

II.1 Grundlagen der Okulomotorik

II.1.1 Physiologie

II.1.1.1 Blickfolgebewegungen (BF) und Fixation

Definition:
Das Blickfolgesystem hat die Aufgabe, ein vom Betrachter fixiertes Blickziel (Objekt) bei Bewegung auf der fovea centralis retinae (Ort des schärfsten Sehens) zu halten, um ihm dauerhaft ein scharfes Bild des Objektes zu gewährleisten.

Einfaches Beispiel für den Einsatz von Blickfolgebewegungen:
Bei Beobachtung eines bewegten Objektes oder sich bewegenden Tieres, das unser Interesse geweckt hat, und das wir fixiert haben, folgen die Augen unwillkürlich, d.h. reflektorisch, dem Ziel. Die Blickfolge wird deshalb auch als visueller Folgereflex beschrieben. Die unscharfen Bilder des stationären Hintergrunds, in diesem Fall der Landschaft, die als Konsequenz aus der Augenbewegung über die übrige Retina ziehen, werden weitgehend ignoriert.

Blickfolgebewegungen können mit unterschiedlichen Reizen untersucht werden:
Zum Beispiel mit „sinusförmigen Blickfolgereizen“ und sogenannten „step-ramp-Reizen“.
Bei den Sinusreizen folgt der Proband einer kontinuierlichen sinusförmigen Reizbewegung, z.B. von der einen Seite des Gesichtsfeldes (z.B. rechts) über die Mitte in das linke Gesichtsfeld und wieder zurück.

Die relevanten Reizparameter bei transzenter Stimulation -

(Blickzielgeschwindigkeit, -position und/oder -beschleunigung ?)

Zusammenfassend scheint als Blickfolgereiz die Geschwindigkeit der primäre Reiz zu sein, obwohl in manchen Situationen (z.B. *open-loop*, s.u.) die Position auszureichen scheint, um Blickfolge zu initiieren (Pola und Wyatt, 1980; Neary et al., 1987). Während der laufenden Blickfolge ist die Blickzielposition in das Vermindern von Fehlern zwischen Fovea und Blickziel einbezogen, besonders wenn das Blickziel nah an der Fovea ist. Die Blickzielposition kann teilweise wichtig sein, wenn man versucht ein bestimmtes Blickziel sehr genau anzuschauen, d.h. hohe Aufmerksamkeit auf das Blickziel kann die Wirkung des Blickziels bzw. der Blickzielposition als Reiz fördern.
Open loop- / closed loop-Bedingung

Das Blickfolgesystem kann auch ohne *negative Rückkopplung* arbeiten, was man als offene Schleife (*engl.* open-loop)-Bedingung bezeichnet (siehe Abb. 1 b). In dieser Bedingung ist die *Rückkopplung* entfernt, was dem System die Fähigkeit nimmt den retinalen Fehler zu minimieren bzw. zu eliminieren.
Prädiktionstheorie für sinusförmige Blickfolgebewegungen

Für sinusförmige Blickfolgebewegungen gilt: Für Geschwindigkeiten von weniger als 40-60°/s (andere Quellen: 25°/s) ist die Blickfolgeschwindigkeit gleich der Objektgeschwindigkeit, und der von aussen messbare gain, d.h. der Quotient von Augengeschwindigkeit zu Objektgeschwindigkeit, annähernd oder gleich 1.
II.1.1.2 Der Vestibulookuläre Reflex (VOR)
Dieses phylogenetisch sehr alte System hat das Ziel, die Fovea auf das einmal eingestellte visuelle Umfeld oder Blickziel zu halten. Es soll die Augen gegen Veränderungen der Kopfposition stabilisieren. Ändert sich die Kopfposition, läßt das System die Augen in dieselbe Richtung schauen wie vor der Positionsänderung. Eine Drehbewegung des Kopfes um die vertikale Z-Achse zum Beispiel führt wegen der Remanenzströmung der Endolymphe in den horizontalen Bogengängen zu einer Cupuladeflektion, durch die über den VOR eine kompensatorische Augendeviation ausgelöst wird. Der VOR kann klinisch getestet werden: Puppenkopfphänomen durch Beobachtung der Augen mit der Frenzelbrille und durch Drehstuhlbeschleunigungen im Dunkeln (s.u.).

II.1.1.3 Fixationssuppression des VOR (VOR-Suppression, VOR-S)

II.1.2 Anatomie
Es stellt sich die Frage: Kann man das Blickfolgesystem im Gehirn "lokalisieren"?

Wichtige Abkürzungen

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA</td>
<td>Brodmann-Area</td>
</tr>
<tr>
<td>CS</td>
<td>Sulcus centralis</td>
</tr>
<tr>
<td>DLPN</td>
<td>Dorsolaterale pontine Nuclei</td>
</tr>
<tr>
<td>DMPN</td>
<td>Dorsomediale pontine Nuclei</td>
</tr>
<tr>
<td>FEF</td>
<td>Frontal Eye Field (frontales Augenfeld)</td>
</tr>
<tr>
<td>ips</td>
<td>intraparietaler Sulcus</td>
</tr>
<tr>
<td>IT</td>
<td>Inferiorer temporaler Cortex</td>
</tr>
<tr>
<td>las</td>
<td>Sulcus lateralis</td>
</tr>
<tr>
<td>LIP</td>
<td>lateraler intraparietaler Sulcus</td>
</tr>
<tr>
<td>LTN</td>
<td>Nucleus terminalis lateralis</td>
</tr>
<tr>
<td>MST</td>
<td>mediale superiore Temporalregion</td>
</tr>
<tr>
<td>MT</td>
<td>mediale Temporalregion</td>
</tr>
<tr>
<td>NPH</td>
<td>Nucleus präpositus hypoglossi</td>
</tr>
<tr>
<td>NRTP</td>
<td>Nucleus reticularis tegmenti pontis</td>
</tr>
<tr>
<td>P</td>
<td>Parietaler Cortex</td>
</tr>
<tr>
<td>PN</td>
<td>Pontiner Cortex</td>
</tr>
<tr>
<td>PF</td>
<td>Präfrontaler Cortex</td>
</tr>
<tr>
<td>PP</td>
<td>posteriorer parietaler Cortex (Area 7a)</td>
</tr>
<tr>
<td>SEF</td>
<td>Supplementäres Augenfeld</td>
</tr>
<tr>
<td>STS</td>
<td>Sulcus temporalis superior</td>
</tr>
<tr>
<td>VIP</td>
<td>ventraler intraparietaler Sulcus</td>
</tr>
<tr>
<td>VN</td>
<td>Vestibuläre Nuclei</td>
</tr>
</tbody>
</table>

Hierarchische Organisation von Blickfolgebewegungen

"Weg" des Signals:

Fovea centralis retinae ➔ N. opticus ➔ Tractus opticus ➔ Corpus geniculatum lat. ➔ Sehbahn ➔ Visueller Cortex V1/ (V2) (Area striata) ➔ V1/V2 ➔ MT. U-Fasern steigen in das darunterliegende Marklager ab und ziehen nach vorne in das zentrale visuelle Feld der Area MT (MTf). Außerdem ziehen U-Fasern retinotop zu peripheren visuellen Feldern von MT. Die indirekten Projektionen von V1 zu MT über die peristriatralen Areae V2-V4 verlaufen ebenfalls über U-Fasern.

Abb. 2 Schematische Darstellung des visuellen Cortex beim Rhesusaffen (Bezeichnung der Areale: siehe Text)

\textbf{Vergleichende Anatomie der MT}

Bei Altweltaffen ist dieses Areal auf der lateralen Wand und dem Boden des kaudalen STS lokalisiert. Bei Neuweltaffen befindet es sich im mittleren Teil des Temporallappens. Bei beiden Arten unterscheiden sich die Areale von der Umgebung durch eine starke Myelinisierung. Beim Menschen konnte in PET2-Studien eine Region innerhalb des lateralen temporoparietookzipitalen

1 Die zytoarchitektonische Rindenfelderung des menschlichen Grosshirns. \textbf{Abb. 3}: konvexe Seite der linken; \textbf{Abb. 4}: mediale Seite der rechten Hemisphäre. Die Zahlen bezeichnen die Rindenfelder. (Nach Brodmann aus Bergmann, W.: Histologie und mikroskopische Anatomie des Menschen, 6. Aufl, Thieme, Stuttgart 1967)

2 Positronen-Emissions-Tomographie
Cortex identifiziert werden, die durch die Perzeption von Bewegung aktiviert wird (fMRT5: im ansteigenden Rand des Sulcus temporalis inferior). Eine Postmortem-Studie des menschlichen Gehirns identifizierte eine stark myelinisierte Zone im lateralen temporoparietookzipitalen Cortex, was ein weiterer Hinweis auf die Bestätigung der Hypothese ist, dass diese Region das menschliche Homologon der Area MT ist. Folglich entsprechen beim Menschen die Areae MT und MST den Areae V5 bzw V5/A (Abb. 5).

Lokalisation der Faserbündel, die an den okzipitoparietalen Verbindungen beteiligt sind:

Die Strukturen liegen in direkter Nachbarschaft des Okzipital- und Temporalhorns des Seitenventrikels. Es sind 3 longitudinal angeordnete Faserschichten:

1. *Forceps major* und *Tapetum* (dorsale und laterale Innenflächen des Seitenventrikels).
2. *Stratum sagittale internum* (lateral vom Tapetum und Forceps major), und
3. das *Stratum sagittale externum* (lateral vom stratum sagittale internum). Außerdem
4. *Fibrae arcuatae (U-Fasern)*, die unterhalb des Cortex am Boden der Sulci benachbarte Windungen verbinden.

MT

Die Fasern ziehen hinab ins Marklager und bilden 3 Bahnen:

5 funktionelle Magnetresonanztomographie
1. U-Fasern, die unter dem Boden des STS verlaufen und sowohl in der Area MST und auf der ventralen Seite des intraparietalen Sulcus im PP enden.

Die 2. Bahn durchquert nach medial das Marklager, tritt in das Strat. sag. int. ein, und endet subcortical im DLPN.

Weiterer Verlauf von der MST-Region

Absteigende Bahnen ziehen in das darunterliegende Marklager.

Sie teilen sich in 3 Bahnen auf:

1. U-Fasern ziehen nach dorsal, und enden im ventralen Anteil des intraparietalen Sulcus innerhalb PP. (MT und PP haben reziproke Projektionen).

Die 2. Bahn zieht nach medial in das Strat. sag. int., durchquert den retrolentikulären Anteil der Capsula interna, steigt durch den Hirnschenkel ab, und endet in zwei Hirnstammregionen: A. im Nucl. terminalis lat. (LTN) des akzessorischen optischen Systems, und B. im DLPN und LPN.

Die 3. Bahn zieht nach medial durch das Marklager in Tapetum/Forceps major, und kreuzt im Splenium zur MST der kontralateralen Hemisphäre.
Weitere Bahnsysteme

Posteriorer parietaler Cortex (PP) - Area 7a

Zwei Studien zeigen, dass dieses Areal eine Rolle in der Erzeugung von Blickfolgebewegungen spielt (Kawano et al., 1984; Sakata et al., 1983). Funktionell ist nach allgemeiner Vorstellung diese Region für die Koordinatenberechnung bzw. Koordinatentransformation des Blickziels im Raum zuständig.

Frontallappen

Wie schon erwähnt haben Läsionen im FEF einen drastischen Effekt auf Blickfolgebewegungen. In einem Experiment mit sowohl sinusförmigen als auch step/ramp-Reizen kam es zu einem Abfall des gains um die Hälfte im Vergleich zu den Kontrollen (Lynch, 1987). Obwohl der Blickfolge gain nach solchen Läsionen so eindrucksvoll erniedrigt ist, gelingt es über kombinierte sakkadische und glatte
Augenbewegungen dennoch die Augen auf dem Blickziel zu halten (Lynch, 1989). Dies ist nicht der Fall bei Läsionen in der MT-Region; es wird vermutet, dass sie für die Berechnung der Blickzielgeschwindigkeiten wichtig ist. Das FEF ist dagegen mehr in die Erzeugung der glatten Bewegung einbezogen. Desweiteren haben Experimente gezeigt, dass die Ausschaltung des FEF die Prädiktionsfähigkeit bei der Blickfolge zerstört (Keating et al., 1985; MacAvoy et al., 1991).

Weiterer subcorticaler Verlauf

Absteigende Bahnen ziehen zu den pontinen Nuclei (PN)

Aus den Regionen: MT/MST, Area 7a des PP, VIP und LIP, der rostralen Wand des Sulcus parieto- okzipitalis (PO), dem FEF und dem cingulären Cortex ziehen absteigende Bahnen zu pontinen Kernen: NRTP, DLPN/DMPN.

Cerebellum

Alle Blickfolgesignale durchqueren das Kleinhirn, bevor der endgültige präokulomotorische Befehl, die Augen zu bewegen, gebildet wird. Nach vollständiger Kleinhirnentfernung sind Blickfolgebewegungen nicht mehr möglich (Westheimer und Blair, 1974).

Flocculus/Paraflocculus ➔ Nucl. vestibularis medialis ➔ (Nucl. abducens), Nucl. präpositus hypoglossi

Nucl. fastiguus ➔ Nucl. periabducens ➔ Nucl. abducens ➔ M. rectus lateralis

Die Abb. 7 zeigt zusammenfassend eine schematische Darstellung der funktionell-anatomischen Verhältnisse des Blickfolgesystems im Gehirn.

Letztendlich bleiben Homologien zwischen den Cortexarealen beim Affen und entsprechenden Arealen beim Menschen spekulativ, obwohl die Hinweise für eine entsprechende hierarchische Verarbeitung visueller Signale und eine funktionelle Spezialisierung innerhalb des Systems beim Menschen dafür sprechen. Ergebnisse bei Experimenten mit der funktionellen Kernspintomographie konnten auf eindrucksvolle Weise weitere Hinweise geben, dass die für den Affen erwähnten Regionen ebenso beim Menschen für die Erzeugung von Blickfolgebewegungen verantwortlich sind (Tootell et al., 1995; van Oostende et al., 1997; Smith et al., 1998; Petit et al., 1997; Kimmig et al., 1999).
Abb. 7 Modell der Leitungsbahnen des Blickfolgesystems im Gehirn (nach Keller und Heinen, 1991)

Dargestellt sind Haupt- und Alternativwege (durchgezogene Linien), corticopontine Projektionen (gestrichelte Linie) und zerebelläre sowie prämotorische Ausgangssignale. Die fettgedruckten Linien verbinden Strukturen mit reziproken Verbindungen, die für die Blickfolge wichtig sind.

FLOC = Flocculus, PARAF = Paraflocculus, VERM = Vermis, UV = Uvula. Andere Abkürzungen: siehe Text.
II.1.3 Blickfolgestörungen bei sinusförmigen Blickfolgereizen

Im vorigen Kapitel wurde schon ausführlich auf umschriebene Blickfolgestörungen nach bestimmten Läsionen in definierten Arealen beim Affen hingewiesen. Zusätzlich soll hier nun auf Blickfolgestörungen eingegangen werden, wie sie beim Menschen beobachtet werden. Störungen der Blickfolge ($gain < 1$) können bidirektionell (omnidirektionell) und unidirektionell sein, d.h. nur nach rechts oder links, oder nach beiden Seiten. Ebenso kann die Blickfolgefähigkeit völlig aufgehoben sein (s.o.).

II.2 Neuroophtalmologische und okulomotorische Aspekte der MD

Um sich der Frage zuzuwenden, ob die okulomotorischen Abweichungen bei der Myotonen Dystrophie eine periphere oder zentrale Ursache hat, untersuchte man sowohl langsame als auch schnelle Augenbewegungen. Insbesondere verglich man bei den Patienten die Blickfolge mit der Fähigkeit, den VOR durch visuelle Fixation zu unterdrücken (VOR-S), da allgemein angenommen wird, dass das Blickfolgesystem an der Fixationssuppression entscheidend beteiligt ist (Barnes, 1993). Die Effektivität der VOR-S ist ausserdem ein guter Parameter, um Aussagen über die Unversehrtheit des ZNS zu erhalten (Chambers und Gresty, 1983). Wenn bei der BF als auch der VOR-S ähnliche Defizite beobachtet werden, würde dies für eine zentrale Ursache der Blickfolgebeeinträchtigung sprechen, da bei optimaler VOR-S gar keine Augenbewegungen resultieren sollten. Um eine Einschätzung über das vermutete Blickfolgesignal bei der VOR-S zu
erhalten wurde auch der VOR gemessen. Diese Messungen führten bei den Untersuchungen von Anastasopoulos et al. (1996) zu folgenden Ergebnissen (Tab. 1):

<table>
<thead>
<tr>
<th>Sakkaden</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Genauigkeit</td>
<td>normal</td>
</tr>
<tr>
<td>Spitzengeschwindigkeit</td>
<td>erniedrigt (bei zentrifugalen und zentripetalen Sakkaden),</td>
</tr>
<tr>
<td>Latenz</td>
<td>bei zentrifugalen Sakkaden normal, bei zentripetalen Sakkaden deutlich gesteigert.</td>
</tr>
<tr>
<td>VOR</td>
<td>normal</td>
</tr>
<tr>
<td>Blickfolge und VOR-S</td>
<td>verminderner Blickfolgengain, beeinträchtigte VOR-S.</td>
</tr>
</tbody>
</table>

Tab. 1 Störungen der Okulomotorik bei MD-Patienten nach Anastasopoulos et al. (1996)

Aus den Ergebnissen folgerten die Autoren, dass die parallele Erniedrigung der Blickfolge- und VOR-S-Leistung ein zentrales Defizit widerspiegelt.

II.3 Neuroradiologische Befunde bei Myotoner Dystrophie

- 42,8% (n=14) (Glantz et al., 1988)
- 68%, groß und zahlreich bei 27% (n=25) (Damian et al., 1993)
- 71,4% (n=28) (Damian und Bachmann et al., 1994)
- 73% (n=22) (Damian und Schilling et al., 1994)
- 46,5% (n=43) (Damian et al., 1995)
- 84% (n=3; 16% der Kontrollen) (Censori et al. 1994).

In den Kontrollgruppen dieser Untersuchungen lag das Vorkommen von entsprechenden Marklagerläsionen bei 7,8% - 16%. Die Häufigkeit einer Hirnatrophie liegt bei der MD bei 50-81%.

** Single-Photon-Emmisions-Computertomographie
†† regionaler zerebraler Blutfluss
II.4 Pathologische Befunde bei Myotoner Dystrophie

Peripherer Muskel

Peripherer Nerv

ZNS

Das ZNS war seit den achtziger Jahren häufiger Zielpunkt pathologischer Studien über die MD. Dabei wurden Proben aus unterschiedlichen Hirnregionen unterschiedlich aufbereitet. Insgesamt lassen sich die gefundenen Merkmale folgendermaßen zusammenfassen:

- Intrazytoplastische Einschlußkörper (auch Marinescokörper) in den Neuronen des Ncl. caudatus, Putamen, Thalamus, Substantia nigra (Ono et al., 1987, Oyanagi et al., 1993).
- Keine oder wenig senile Plaques, weder bei den MD-Fällen noch bei den Kontrollen.
Außerdem neuronale Degeneration, Atrophie und stellenweise erhebliche Gliosen (Yoshimura et al., 1989).

In einer weiteren Studie konnte bei einem Fall das neuropathologische Substrat der Marklagerläsion, die bei diesem Patienten aufgrund der kraniellen Computertomographie vermutet wurde, demonstriert werden. Die Autoren beschrieben einen diffusen Myelinverlust mit relativ guter Erhaltung der Axone (Abe et al., 1994).

Zusammenfassend sehen viele Autoren ihre neuropathologischen Befunde neben den anderen Krankheitsmerkmalen wie die Stirnlatze, die Gonadenatrophie oder die Katarakte als Zeichen einer Voralterung (engl. ’premature senility’ oder ‘progeric changes’).

Eine Studie, die diese neuropathologischen Befunde mit klinischen Daten korreliert, steht noch aus. Möglich ist, dass diese pathologischen Veränderungen mit kognitiven und neurologischen Funktionsstörungen korrelieren.
II.5 Fragestellung

Ziele bzw. Fragen der vorliegenden Arbeit waren:

a) In welchen Hirnregionen sind die bekannten Marklagerläsionen lokalisiert und welches Ausmass haben sie?

b) Welcher Art sind die Läsionen?

c) In einem weiteren Schritt soll ein Zusammenhang mit der funktionellen Untersuchung der Okulomotorik hergestellt werden.

d) Aufgrund der unter c) gewonnenen Ergebnisse soll schließlich eine funktionelle Topographie der Blickfolgestörungen erstellt werden.

Zu (a): Die Lokalisierung und Vermessung der Marklagerläsionen erfolgte mit der kraniellen Kernspintomographie. Zur Auswertung der MRT wurde eine Methode entwickelt, die bekannten Marklagerläsionen in einem Standardhirn darzustellen.

Zu (b): In einem Fall stand das Gehirn eines verstorbenen MD-Patienten für eine Aufarbeitung der Histopathologie der Marklagerläsionen zur Verfügung. Es sollte neben den allgemeinen neuropathologischen Befunden das Substrat der Marklagerveränderungen demonstriert werden. Insbesondere galt es zu klären, ob es sich dabei um Demyelinisierungsherde, Schäden vaskulärer Genese oder bereits früh angelegte Entwicklungsanomalien handelt.

Zu (c): Bei insgesamt 17 MD Patienten sollte die Blickfolge, der VOR sowie die VOR-S untersucht werden.

Zu (d): Zuletzt sollte durch die Korrelation von Läsionsorten und Blickfolgeleistung eine funktionelle Topographie dieser Leistung erstellt werden.
III. Methodik

III.1 Patienten- und Kontrollgruppe

Siebzehn Patienten mit MD im Alter von 17-68 Jahren (43,5 ± 16,5 SD) und 14 gesunde Kontrollpersonen im Alter von 21-71 Jahren (39,85 ± 15,3 SD) gaben ihr Einverständnis zur durchgeführten Studie. Die Patienten wurden generell klinisch, neurologisch, neuroophthalmologisch und neuroradiologisch (MRT, n=12) untersucht.

Die Schwere der Erkrankung wurde durch den Karnofsky-Index beurteilt (Karnofsky und Burchenal, 1949); er lag bei der Patientengruppe im Bereich von 50% bis 90% (Mittelwert 70,67 ± 12,29). Elf Patienten zeigten eine bilaterale Ptosis, 2 davon sehr ausgeprägt. Die klinische Überprüfung der Augenbewegungen zeigte keine grobe Auffälligkeit. Keiner der Patienten war in seiner Vigilanz eingeschränkt.
III.2 Krankengeschichte des Patienten Nr. 12

In seinem 36 Lebensjahr traten bei dem Patienten die ersten Symptome der MD auf. Er bemerkte ein undeutliches Sprechen; in den folgenden Jahren kamen distal betonte Paresen hinzu. Schon andere Vorfahren litten an einer nicht näher diagnostizierten Muskelkrankung. Aufgrund des Vererbungsmodus der MD kann man aber davon ausgehen, dass es sich dabei ebenfalls um die MD handelte, außerdem wurde bei zwei von drei Söhnen des Patienten die MD nachgewiesen (Abb. 8).

Abb. 8 Stammbaum der Familie von Patient Nr. 12 (←)
III.3 Augenbewegungsmessung - Elektronystagmographie (ENG)

III.3.1 Geräte

Die Patienten und Normalpersonen saßen auf einem elektrisch betriebenen Bárány-Stuhl (Tönnies, Freiburg, Abb. 9) in der Mitte eines zylindrischen Schirms mit einem Radius von 1,6 m. Während der Präsentation der Reize war der Kopf mit einem Zahnbeißbrett stabilisiert. Ein Laserpunkt wurde mit Hilfe eines Spiegelgalvanometers auf den Schirm projiziert, wobei dessen Achse colinear mit der des Drehstuhls ist. Lichtpunkt und Stuhl wurden computergesteuert bewegt.

III.3.2 Reizprogramme

Blickfolge (BF) - und VOR (Vestibulo-Okulärer Reflex) - Tests

Zur Durchführung der Blickfolgebewegungen rotiert der Punkt auf dem Schirm sinusförmig horizontal um die feststehende Testperson, die den Punkt mit ihren Augen verfolgen muss. Der horizontale VOR wird durch den sich drehenden Drehstuhl im Dunkeln ausgelöst. Die Testpersonen lösten dabei Rechenaufgaben im Kopf, um ein hohes Maß an Aufmerksamkeit zu erzielen. Zum Test der VOR-Suppression (VOR-S) werden Stuhl und Punkt gemeinsam gedreht, dabei muss der VOR unterdrückt werden. Die Versuchsperson wird angewiesen den Punkt zu fixieren. Die Reize bestehen aus sinusförmigen Drehungen mit Frequenzen von 0,1, 0,2, 0,4 und 0,8 Hz (s.u.). Für diese Frequenzen wurde eine Serie mit konstanter Amplitude und steigender Maximalgeschwindigkeit gemessen (Tab. 2). Es gilt: $v_{\text{max}} = 2\pi \times \text{Amplitude} \times \text{Frequenz}$

Bei jeder Frequenz wurden 4-6 Reizperioden geboten. Die Reihenfolge der 3 Experimente: Blickfolge, VOR und VOR-S wurde randomisiert dargeboten, während die Reihenfolge der Reizfrequenzen innerhalb einer Bedingung in aufsteigender Reihe festgelegt war (0,1-0,8 Hz).

<table>
<thead>
<tr>
<th>Sinusreiz Freq (Hz)</th>
<th>0,1</th>
<th>0,2</th>
<th>0,4</th>
<th>0,8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplitude (°)</td>
<td>± 16</td>
<td>± 16</td>
<td>± 16</td>
<td>± 16</td>
</tr>
<tr>
<td>Geschwindigkeit v_{max} (°/s)</td>
<td>10</td>
<td>20</td>
<td>40</td>
<td>80</td>
</tr>
</tbody>
</table>

Tab. 2 Reizprogramm der Studie (konstanter Amplitude (± 16°) und steigender Maximalgeschwindigkeit) - gilt für Blickfolge-, VOR und VOR-S-Reize.
III.3.3 Datenaquisition und Datenanalyse.

III.3.4 Datenauswertung

verwendet. Schließlich wurden die Daten mit der Anwendung SuperANOVA 1.11 der Abacus Concepts, Inc. statistisch ausgewertet (Varianzanalyse).

Die Programme liefen als Anwendungen auf Personalcomputern der Apple Computer, Inc.

III.4 Magnet-Resonanz-Tomographie (MRT)

III.4.1 Gerät

Die Untersuchungen fanden in der Magnetresonanztomographie der Neuroradiologie im Neurozentrum des Universitätsklinikum Freiburg statt. Der benutzte Magnetresonanztomograph war ein SIEMENS Vision mit einer Feldstärke von 1,5 Tesla.

III.4.2 Sequenzen

Für eine sogenannte „T1-Wichtung“ wird die longitudinale Relaxation („T1-Zeit“) zur Bildgebung herangezogen. Charakteristikum der T1-Wichtung: Kurze Pulswiederholzeit (kurze TR, engl. time repetition) und frühe Auslesung des Signals (kurze TE (Echoausleseverzögerung), engl. time echo delay). In der T1-Wichtung erscheint Fett signalreich. Sie eignet sich insgesamt zu einer guten anatomischen Darstellung der Organstrukturen und hat besondere Bedeutung für den Vergleich zwischen der nativen Sequenz und der Sequenz nach intravenöser Kontrastmittelgabe - mit Gadolinium, einer paramagnetischen Substanz, die über eine Verkürzung der T1-Zeit in allen stark perfundierten, Kontrastmittel-aufnehmenden Strukturen zur Signalanhebung führt. In dieser Studie wurde um gegebenfalls eine dreidimensionale Rekonstruktion erstellen zu können ein anatomischer Datensatz mit 1mm dünnen Schichten in T1-Wichtung ohne Kontrastmittel erstellt.

von reinen Zysten.

Die FLAIR-Sequenz (*Fluid Attenuated Inversion Recovery, Siemens*)\(^\ddagger\)\(^\ddagger\) schafft stark T2-gewichtete Bilder während gleichzeitig das Liquorsignal unterdrückt wird durch Setzen eines Inversionsimpulses mit einer langen Erholungszeit zwischen Impuls und Beginn der Messung. Aus systematischen Untersuchungen zur Wertigkeit der FLAIR-Sequenz geht hervor, dass bei subcortikalen (und kortikalen) gelegenen Läsionen diese Messsequenz den konventionellen Spinecho-Sequenzen überlegen ist, weil Partialvolumeneffekte zur grauen Substanz oder zum Liquor vermieden werden (Keller et al., 1995). Das Messprotokoll umfasste die in Tab. 3 genannten Sequenzen in axialer Schichtführung.

<table>
<thead>
<tr>
<th>TR (ms)</th>
<th>TE (ms)</th>
<th>TI (ms)</th>
<th>Schichtdicke (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1-gewichtete Spin-Echo-Sequenz (Flash 3D)</td>
<td>40.0</td>
<td>6.0</td>
<td>1</td>
</tr>
<tr>
<td>T2- und Protonengewichtete Spin-Echo-Sequenz</td>
<td>4440.0</td>
<td>119.0/2</td>
<td>2</td>
</tr>
<tr>
<td>FLAIR-Sequenz</td>
<td>9000.0</td>
<td>110.0</td>
<td>2261.0</td>
</tr>
</tbody>
</table>

Tab. 3 Sequenzen des Messprotokolls (TR - time repetition, Pulswiederholzeit; TE - time echo delay, Echoausleseverzögerung; TI = inversion recovery time, Inversionszeit)

III.4.3 Spezieller Hinweis zu den MRT bei Patient Nr. 12

Bei Patient Nr. 12 wurden im Rahmen der neurologischen Abklärung 1992 Kernspintomographien (T1- und T2-gewichtete Sequenzen) angefertigt.

Postmortaler wurde das Gehirn isoliert kernspintomographisch untersucht. Es wurden die oben in Tab. 3 genannten Sequenzen angewendet, sowie für die makropathologische Sektion als Orientierungshilfe noch coronare Schichten in T2-Gewichtung (s.o) angefertigt, die durch die Marklagerläsionen gelegt wurden, da die Hirnschnitte in der Sektion frontal gelegt werden.

III.4.4 Datenanalyse

Die Beurteilung der MRT und Identifikation der Marklagerläsionen erfolgte mit Unterstützung eines Neuroradiologen.

\(^\ddagger\) Die Firma PHILIPS nennt diese Sequenz TIRM (Turbo Inversion Recovery)
Wie wird eine Marklagerauffälligkeit als Läsion definiert?

Zu Beginn der Auswertungen bestand der Anspruch die Marklagerläsionen objektiv, mathematisch nachvollziehbar definiert, zu identifizieren und auch zu quantifizieren. Es wurde mit einem speziellen Bildbearbeitungsprogramm versucht einen Algorithmus festzulegen, der die Marklagerläsionen automatisch erkennt und segmentiert. Dies geschah durch Festlegung eines Grauwertebereichs, innerhalb dessen die Läsionen liegen sollten. In den ersten Messungen schlossen die automatisch identifizierten Segmente zwar die Marklagerhyperintensitäten plausibel ein, allerdings auch andere Teile des Gehirns in der Nachbarschaft wie die Basalganglien und Anschnitte der Ventrikel vor allem im Bereich der Vorder- und Hinterhornspitzen. Um im weiteren nur die Marklagerläsionen plausibel zu erfassen, hätte das automatisch segmentierte Bild aufwendig manuell nachbearbeitet werden müssen.

Dies schien wenig sinnvoll, und so entschloss man sich, die Identifikation der Marklagerläsionen der Einschätzung eines erfahrenen Neuroradiologen zu überlassen, und die Eingrenzung der auffälligen Marklagerbezirke manuell vorzunehmen.
III.4.5 Auswertung

Kriterien

Abb. 10 Standardgehirn aus 10 Schichten nach Greenlee et al., 1993
III.4.6 Darstellungsmethode

Zur Identifikation der betroffenen Hirnregionen auf dem oben gezeigten und beschriebenen Standardhirn, und der Klärung der Frage welche Regionen kaum bzw. überwiegend betroffen sind, wurde eine abstufende Darstellungsmethode etabliert, die es möglich macht, die betroffenen Areale quasi auf einen Blick, durch Übertragung der betroffenen Felder in eine Farbcodierung sichtbar zu machen. Zwischen der Blickfolgebewegung nach rechts und links bestand statistisch kein Unterschied, so dass die für die gain-Werte rechts und links je Reizfrequenz zu einem Mittelwert zusammengefasst wurden.

Zur Klärung eines möglichen Zusammenhangs zwischen Blickfolgeleistung und Ort der Läsion auf einer bestimmten Schicht galt als Mass für die Blickfolgeleistung bei jedem Patienten sein gain-Wert bei 0.8 Hz (Amplitude = ±16°, \(v_{max} = 80°/s \)). Dieser individuelle Wert wurde in jedes betroffene Feld beim entsprechenden Patienten eingetragen. Daraufhin wurden alle Schichten bei allen Patienten zusammengefasst, und statistisch aufgearbeitet, um den mittleren gain bei 0,8 Hz für jeden Läsionsort auf den 10 Schichten zu ermitteln. Auch diese Werte wurden farbcodiert in das Linienetz eingetragen. Die Farbcodierung wurde mit dem Analyseprogramm MATLAB, The MathWorks, Inc. durchgeführt.
Abb. 11 Methodik der MRT-Auswertung - Auswertungsschritte 1. bis 4.
1. Identifikation der Marklagerläsionen auf einer MRT-Schicht (hier T2-Wichtung). Es werden nur die auffälligen (betroffenen) Schichten ausgewählt, die mit grosser Annäherung Schichten des Standardgehirns entsprechen (Abb. 10).
2. Anpassen des 6 x 12 Gitters.
3. Definieren des Läasionsortes auf dem Gitter (scharfiert). Mindestens 50% der Läsion muss ein Feld ausfüllen, um als Läissionsort markiert werden zu dürfen.
4. Übertrag in die entsprechende Schicht des Standardgehirns. (= Schicht 04/10)
III.5 Neuropathologische Untersuchungen

III.5.1 Präparat

III.5.2 Histologische Färbemethoden

Mark scheidenfärbung Kluever-Barrera

Bodian-Versilberung

Neurofibrillen (ANF), abnorme Ansammlungen von 100 Å - Neurofilamenten, sowie Amyloidansammlungen als braun bis schwarze Fasern vor hellem Hintergrund hervor. Aufgrund dieser Eigenschaften ist diese Methode auch nützlich zur Darstellung seniler Plaques.

Makrophagen/Mikrogliamarker CD68 (Fa. DAKO, Glostrup, Dänemark)

Das CD68-Antigen ist ein glykosyliertes Transmembranprotein (110 kDa), dass hauptsächlich in Lysosomen lokalisiert ist. Der hier eingesetzte Antikörper gegen CD68 färbt ubiquitär insbesondere aktivierte Makrophagen im Rahmen zahlreicher verschiedener pathologischer Prozesse in verschiedenen menschlichen Geweben an (z.B. Kupffer’sche Zellen, Makrophagen in der Milz, Lunge oder Knochenmark, sowie Mikroglia im Gehirn).
IV. Ergebnisse

IV.1 Okulomotorik

Da in der Auswertung der Augenbewegungen, Verstärkungsfaktoren (gains) für die Blickrichtungen Rechts und Links getrennt bestimmt wurden, wird zunächst ein Vergleich der Blickfolgedaten bezüglich der Augenbewegungsrichtung vorangestellt. Hierzu werden je die gains für die Rechtsbewegung mit den gains für die Linksbewegung bei 0,8 Hz Stimulationsfrequenz verglichen. Die statistische Auswertung erfolgte durch eine 2-Faktoren-ANOVA (Analysis of Variance). Bestünde kein signifikanter Unterschied, könnten die Daten der „nach Rechts-Bewegung“ mit denen der „nach Links-Bewegung“ für die statistische Auswertung zusammengefasst werden. Dies würde die Datenmenge verdoppeln und so zur statistischen Relevanz der Daten beitragen.

Im Rechts-Linksvergleich zeigten sich für alle durchgeführten Tests keine signifikanten Unterschiede:

\[
\begin{align*}
\text{Blickfolge} & \quad \text{Patienten} & [F (1,12) = 0,38, P < 0,5511] \\
& \quad \text{Kontrollgruppe} & [F (1,12) = 0,07, P < 0,8007] \\
\text{VOR} & \quad \text{Patienten} & [F (1,12) = 2,43, P < 0,1451] \\
& \quad \text{Kontrollgruppe} & [F (1,12) = 1,39, P < 0,2618] \\
\text{VOR-S} & \quad \text{Patienten} & [F (1,12) = 0,03, P < 0,8777] \\
& \quad \text{Kontrollgruppe} & [F (1,12) = 0,01, P < 0,9187]
\end{align*}
\]

In allen weiteren statistischen Berechnungen wurden demnach die beiden Richtungen zusammengefasst.
IV.1.1 Blickfolge (BF)

Abb. 12 zeigt das Beispiel einer Blickfolgebewegung bei einem MD-Patienten. Die entsprechende Augenbewegung (Augenposition) korrespondiert als Ganzes gut zur Blickzielveränderung, wobei aber die glatte Komponente beträchtlich kleiner ist, eine Tatsache die durch sogenannte Aufholsakkaden kompensiert wird. Der mittlere Blickfolgegain (BF-gain) ist sowohl für die MD-Patienten als auch die Kontrollgruppe in Abhängigkeit von der Stimulationsfrequenz in Abb. 14 A dargestellt. Sowohl die Normalpersonen als auch die Patienten zeigen einen stetigen Gainabfall von 0,1 bis 0,8 Hz, wobei der Unterschied zwischen beiden Gruppen von 0,1 bis 0,4 Hz nahezu konstant war (0,14 bis 0,18). Bei 0,8 Hz ist der Unterschied mit 0,29 am größten. Statistisch waren diese Effekte bezüglich der zwei Faktoren Gruppe und Frequenz signifikant: [Gruppe: $F(1,220) = 30,1, P < 0,0001$; Frequenz: $F(3,220) = 34,3, P < 0,0001$]. Darüberhinaus ergab sich keine signifikante Interaktion zwischen den beiden Faktoren.

IV.1.2 Vestibulo-okulärer Reflex (VOR)

Die Abb. 14 B zeigt den VOR-gain in Abhängigkeit von der Stimulationsfrequenz für Patienten und Kontrollpersonen. Es zeigten sich keine statistisch signifikanten Effekte bezüglich des Faktors Gruppe, lediglich zeigte sich ein kleiner, jedoch nicht signifikanter Effekt bezüglich des Faktors Frequenz [$F(3,228) = 1,85; P = 0,1389$]. Dieses Ergebnis spiegelt den bekannten Effekt wieder, dass der VOR-gain diskret höher ist bei hohen verglichen mit niedrigen Frequenzen.
IV.1.3 Fixationssuppression des VOR (VOR-S)

Weder die Patienten- noch die Kontrollgruppe war in der Lage den VOR während des Fixierens des Kopf-synchron fixierten Punkt vollständig zu unterdrücken. Dies ist beispielhaft bei einem MD-Patienten in Abb. 13 dargestellt. Der mittlere VOR-S-gain Abb. 14 C bei den Normalpersonen war 0,09 bei 0,1 Hz und stieg leicht mit zunehmender Frequenz auf 0,29 bei 0,8 Hz an. In der Patientengruppe war der gain höher mit 0,10 bei 0,1 Hz, mit einem langsam zunehmenden Unterschied mit ansteigender Frequenz (0,38 bei 0,8 Hz). Statistisch zeigten sich signifikante Effekte bezüglich des Faktors Gruppe [\(F (1,220) = 13,7; \ P = 0,0003 \)] und Frequenz [\(F (3,220) = 34,9; \ P = 0,0001 \)], wobei sich keine signifikante Interaktion zwischen beiden Faktoren zeigte.
Abb. 14 Ergebnisse der Augenbewegungsmessungen
Verstärkungsfaktor (gain) der langsamen Komponente der Blickfolgebewegung (A), VOR in völliger Dunkelheit (B), und VOR-S (C) bei den MD-Patienten (n=17, Quadrate) und der Kontrollgruppe (n=14, Kreise). Die mittleren Gainwerte (± 95 % Konfidenzintervalle) sind in Abhängigkeit von der Stimulationsfrequenz dargestellt.
IV.2 MRT

IV.2.1 Vergleich der MRT aller Patienten
Zwölf von siebzehn MD-Patienten wurden kernspintomographisch untersucht. Die Korrelation der Daten dieser Patientengruppe bezüglich der Variablen: Alter, CTG-repeats und Blickfolgegain bei 0,8 Hz, ergab keine statistisch signifikanten Zusammenhänge (Tab. 4).

<table>
<thead>
<tr>
<th>Alter</th>
<th>Karnofsky-Index</th>
<th>CTG-repeats</th>
<th>Blickfolge-gain (0,8 Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,00</td>
<td>-0,49</td>
<td>0,29</td>
<td>-0,11</td>
</tr>
<tr>
<td>-0,48</td>
<td>1,00</td>
<td>-0,25</td>
<td>-0,15</td>
</tr>
<tr>
<td>0,29</td>
<td>-0,25</td>
<td>1,00</td>
<td>-0,21</td>
</tr>
<tr>
<td>-0,11</td>
<td>-0,15</td>
<td>-0,21</td>
<td>1,00</td>
</tr>
</tbody>
</table>

Tab. 4 Korrelationsmatrix für die 12 Patienten mit MRT

Welche Hirnregionen waren in welchem Ausmaß betroffen?

Die Antwort auf diese Frage geben die Darstellungen C02p bis C08p (Abb. 15). Dargestellt ist die Häufigkeit, wie oft ein Feld betroffen war (min 0, max 24).

Bezüglich der Lokalisation der Läsionen wurde das Gehirn in einen anterioren, überwiegend frontalen (präzentralen) Anteil, einen posterioren, überwiegend parieto-okzipitalen (postzentralen) Anteil, und einen temporalen Anteil unterteilt.

Überwiegend war das posteriore gefolgt vom anterioren Marklager betroffen. Rein temporale Läsionen waren selten. Bezogen auf die Schichten des Standardgehirns wiesen die Schichten C01p, C09p und C10p keine Läsionen auf, d.h. sowohl hoch apikal als auch basal wurden keine Läsionen gefunden. Die Verteilung der Läsionen auf den Schichten C02p bis C08p sind in Tab. 5 dargestellt. Es zeigte sich, dass 86 Läsionen (26,6 %) im anterioren, 222 Läsionen (68,7 %) im posterioren, und 15 Läsionen (4,6 %) im temporalen Marklager lagen.

Zusammenfassend wiesen alle betroffenen Schichten, bis auf die Schicht C08p, anteriore d.h. überwiegend frontale Marklagerläsionen auf. Desweiteren war offensichtlich, dass die meisten
Läsionen posterior, überwiegend parieto-okzipital, und bei näherer Betrachtung periventrikular lagen.

Die periventrikuläre Betonung der Läsionen zeigt sich besonders bei Betrachtung der einzelnen Schichten. Hier findet man mehr als 50 Läsionen nur auf den Schichten 3, 4 und 5, und zwar betont in dem den Ventrikelhörnern benachbarten Marklager. Interessanterweise nimmt die Häufung der Läsionen von den Ventrikelhörnern nach peripher hin ab.

<table>
<thead>
<tr>
<th>Schicht</th>
<th>Anzahl Läsionen pro Schicht bei n=24 Hemisphären</th>
<th>betroffene Regionen qualitativ/quantitativ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>anterior</td>
</tr>
<tr>
<td>C02p</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>C03p</td>
<td>57</td>
<td>17</td>
</tr>
<tr>
<td>C04p</td>
<td>147</td>
<td>27</td>
</tr>
<tr>
<td>C05p</td>
<td>85</td>
<td>26</td>
</tr>
<tr>
<td>C06p</td>
<td>13</td>
<td>10</td>
</tr>
<tr>
<td>C07p</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>C08p</td>
<td>15</td>
<td>-</td>
</tr>
<tr>
<td>Gesamt</td>
<td>323</td>
<td>86</td>
</tr>
</tbody>
</table>

26,6 % 4,6 % 68,7 %

Tab. 5 Verteilung der Läsionen auf den Schichten C02p bis C08p auf dem Standardgehirn
Abb. 15 Schichten C02p-C08p. Korrespondierend zu den Schichten des Standardgehirns ist hier die Häufigkeit, wie oft ein bestimmtes Feld betroffen war, farbcodiert dargestellt. Die Schichten C01p, C09p sowie C10p sind nicht aufgeführt, da auf diesen keine Läsionen gefunden wurden.

Die Farbskala reicht von 0 (keine Läsion) bis 24 (maximale Anzahl Läsionen pro Feld).
Erstellung einer funktionellen Topographie durch Korrelation von Blickfolgeleistung und Läsionsorten

Es soll geklärt werden, ob es Läsionsorte gibt, die mit einem besonders niedrigen gain assoziiert sind. Möglicherweise kann dies Hinweise liefern, ob es einen pathologisch-anatomischen Fokus für reduzierte Blickfolgeleistung gibt. Wie in den Blickfolgeergebnissen gezeigt wurde, ist bei 0,8 Hz der Unterschied in der Blickfolgeleistung zwischen Patienten- und Kontrollgruppe mit 0,29 am größten. Im Vergleich hierzu sind die Unterschiede zwischen 0,1 und 0,4 Hz gering (0,14 bzw. 0,18). Deshalb wird als Mass der Blickfolgeleistung der mittlere gain bei 0,8 Hz gelten. Grundlage der Bildanalyse ist die farbcodierte Darstellung der mittleren gains bei 0,8 Hz in dem Gitter über dem Standardgehirn aus 10 Schichten (M02 - M08) (Abb. 16).

<table>
<thead>
<tr>
<th>Schicht</th>
<th>anterior</th>
<th>posterior</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>min</td>
<td>max</td>
</tr>
<tr>
<td>M02p</td>
<td>0.29</td>
<td>0.58</td>
</tr>
<tr>
<td>M03p</td>
<td>0.08</td>
<td>0.25</td>
</tr>
<tr>
<td>M04p</td>
<td>0.19</td>
<td>0.58</td>
</tr>
<tr>
<td>M05p</td>
<td>0.04</td>
<td>0.28</td>
</tr>
<tr>
<td>M06p</td>
<td>0.04</td>
<td>0.11</td>
</tr>
<tr>
<td>M07p</td>
<td>0.24</td>
<td>0.24</td>
</tr>
<tr>
<td>M08p</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Tab. 6 Verteilung der mittleren gain-Werte auf den Schichten M02p-M08p. Aufgeführt ist je Schicht der kleinste und größte Wert, sowie der Mittelwert aller auf der Schicht vorkommenden Gainwerte, jeweils aufgegliedert auf die Hirnregionen. Fett unterlegt sind die pro Region kleinsten bzw. größten gefundenen Werte. Schliesslich wurde der sich aus allen Mittelwerten der Schichten ergebende mittlere gain-Wert pro Region ermittelt

Der mittlere gain (bei 0,8 Hz Reizfrequenz) liegt zwischen 0,04 und 0,58. Der niedrigste und der höchste Wert liegt jeweils frontal. Errechnet man für jede Schicht für die entsprechende Region einen Mittelwert über die Fälle in jedem Quadrat, bestätigt sich dieses Bild. Der höchste wie der niedrigste gain liegt im anterioren Marklager (0,435 auf M02 und 0,076 auf M06). Zusammenfassend ergibt sich für den vorderen Hirnabschnitt ein niedrigerer gain (0,225) als im hinteren Hirnabschnitt mit 0,352. Der Vergleich ist allerdings nicht statistisch signifikant (\(P = 0,2303 \)).
Abb. 16 Schichten M02-M08. Korrespondierend zu den Schichten des Standardgehirns sind hier die mittleren gain-Werte pro Feld farbcodiert dargestellt. Die Schichten C01p, C09p sowie C10p sind nicht aufgeführt, da auf diesen keine Läsionen gefunden wurden.

Die Farbskala reicht von einem gain-Wert von 1.0 = optimale Blickfolgeleistung, (d.h. genaue Übereinstimmung zwischen Blickziel und Augenbewegung) bis 0 = „schlechteste“ Blickfolgeleistung, (d.h. quasi keine Blickfolge bzw. Übereinstimmung zwischen Blickziel und Augenbewegung.)
IV.2.2 Prämortale und postmortale MRT bei Patient Nr. 12

Im Vergleich zeigte sich, dass die prämortalen MRT von 1992 mit den postmortalen MRT von 1996 vergleichbar waren (Abb. 21). Das heisst, die MRT des isolierten Gehirns stellten alle anatomischen Strukturen identisch dar, wie die MRT des prämortalen Gehirns. Es zeigte sich lediglich ein Unterschied in der Qualität der MRT: die postmortalen MRT waren aufgrund der besseren Technik höher aufgelöst, und besser kontrastiert, so dass sich insbesondere die Marklagerstrukturen klarer darstellten. Auch im zeitlichen Verlauf, innerhalb der 4 Jahre, waren die Marklagerläsionen in ihrer Ausdehnung oder Verteilung nicht progredient oder regredient. Die Läsionen waren am ausgeprägtesten im posterioren Marklager beidseits gelegen, assoziiert zu den Seitenventrikelhinterhörrnern.
IV.3 Neuropathologie

IV.3.1 Makropathologische Befunde

IV.3.2 Histologie

Mikrogliazellen. Weiterhin kommen zahlreiche perivaskulär akzentuierte CD68-immunpositive Makrophagen zur Darstellung (Abb. 20).

intrazytoplasmatischen Einschlüssen. Im Bereich der Hippocampi finden sich keine ANF und senilen Plaques.

Abb. 19 Marklagerdefekt - Bodian-Versilberung

Abb. 20 Marklagerdefekt - CD68

Hirnstamm

Alle Neurone in der unteren Olive zeigen massive auffällige Einlagerungen von Lipofuszingranula innerhalb des auffällig geschwollenen Zellsomas, das die Zellkerne in die Peripherie der Zellen drückt. Diese Veränderungen sind begleitet von einer auffälligen gliotischen Reaktion mit einer
deutlichen Vermehrung reaktiver Astrozyten mit stark geblähten Zytoplasma, die an Gemistozyten erinnern.

Zervikales Rückenmark

IV.4 Vergleich MRT - Makropathologie

Schon in der makropathologischen Sektion konnten pathologische Veränderungen im Bereich des periventrikulären Marklagers identifiziert werden (Abb. 21 C). Diese waren bezüglich Ihrer Lokalisation identisch mit der Lokalisation der Marklagerhyperintensitäten auf den in-vivo, als auch auf den post mortal durchgeführten MRT (Abb. 21 A + B). Wie schon beschrieben, waren die auffälligen Regionen betont im periventrikulären Marklager des linken Frontallappens und des rechten Okzipitallappens lokalisiert. Im Zentrum der Hyperintensitäten zeigte sich eine umschrieben geringere Marklagerkonsistenz im Sinne einer geringgradigen Erweichung.

Abb. 21 Vergleich prämortale - postmortale MRT und Makropathologie

V. Diskussion

Die Ergebnisse der vorliegenden Studie können folgendermassen zusammengefasst werden:

2. Die Analyse der MRT zeigte, dass alle Patienten Marklagerhyperintensitäten (MLH) aufwiesen. Betont betroffen waren das posteriore (überwiegend parieto-okzipitale) (68.7 %) und das anteriore (überwiegend frontale) (26,6 %) Marklager. Bezüglich des Zusammenhangs von Blickfolgeleistung und MLH zeigte sich, dass die niedrigsten gains bei 0,8 Hz (als Mass für verringerte Blickfolgeleistung) im anterioren Marklager (Mittelwert = 0,225), gefolgt vom posterioren Marklager (Mittelwert = 0,352) lagen.

V.1 Blickfolgedefizite bei Patienten mit Myotoner Dystrophie

Ebenso wie bei Anastasopoulos et al. (1996) waren im Gegensatz zur Blickfolge der VOR bei den Patienten unbeeinträchtigt, was die Möglichkeit ausschließt, dass periphere Defizite (äussere Augenmuskeln) die Ausführung der langsamten Augenbewegungen signifikant beeinträchtigen. Der normale VOR liefert auch einen Hinweis, dass die Vigilanz bei den Patienten nicht vermindert war. In den Untersuchungen von Anastasopoulos et al. war ausser dem VOR auch die Latenz bei zentripetalen Sakkaden im Gegensatz zu den zentrifugalen Sakkaden normal. Auch dieses Ergebnis ist als Hinweis für unverminderte Vigilanz zu werten.

V.2 Marklagerauffälligkeiten in der kranialen Bildgebung

Eine weitere Studie (Tupler et al., 1992) beschäftigte sich nicht nur mit der Frage nach der Inzidenz von MLH unterschiedlicher Lokalisation bei klinisch Gesunden, sondern führte bei allen untersuchten Patienten neuropsychologische Tests durch. Es wurde untersucht, ob die Marklagerläsionen einen funktionellen Effekt haben. Von den 66 untersuchten Patienten (Alter 45 bis 84 Jahre, Mittelwert 61,8 ± 15,8 Jahre) wiesen 72,7 % überwiegend geringgradige subcortikale Hyperintensitäten auf. Mit den verwendeten neuropsychologischen Tests (Benton Facial Recognition Test, Digit Symbol Subtest) fand sich kein Zusammenhang zwischen den gefundenen

V.3 MLH und Blickfolgesystem
Aufgrund des interdisziplinären Ansatzes war es möglich eine Korrelation zwischen einer umschriebenen Funktion, der Blickfolge, und der zerebralen Topographie herzustellen. Interessanterweise zeigte sich eine Korrelation zwischen stark beeinträchtigter Blickfolge und
Läsionen im frontalen Marklager. Dies schien plausibel, da die Blickfolge bei den Probanden mit Sinusreizen getestet wurde, was vor allem die prädiktiven Eigenschaften des Blickfolgesystems fordert, die in frontalen Cortexregionen generiert wird (frontale Augenfelder). Die Leitungsbahnen, die diese frontalen Cortexareale mit posterioren Arealen und den beteiligten Kerngebieten verbinden, ziehen durch frontales Marklager. Eine Schädigung dieser Marklagerregion hätte Konsequenzen für die Informationsweiterleitung.

Andere Studien, die Marklagerläsionen bei der MD und okulomotorische Daten verglichen haben, liegen nicht vor. Eine Studie der Neurologischen Universitätsklinik Freiburg, Arbeitsgruppe Okulomotorik, Kimmig/Mergner, untersuchte mit einer dieser Arbeit vergleichbaren Methodik die Blickfolgebewegungen (und die VOR-S) bei 10 Patienten mit idiopathischem Normaldruckhydrocephalus (NPH) (Kimmig et al., 1996). Es zeigte sich, dass die Blickfolge massiv gestört war. Auch beim NPH lassen sich, wie schon angeführt, in der zerebralen Bildgebung (CT, MRT) ausgedehnte periventrikuläre Schäden im Marklager nachweisen. Man schloss aus den Ergebnissen, dass die Blickfolgedefizite durch Schäden der dort hindurchziehenden visuo-okulomotorischen Bahnen des Blickfolgesystems verursacht werden.

V.4 Zum Vergleich prä- und postmortale MRT

V.5 Neuropathologie

Neben einer diskreten Erweiterung des inneren Liquorsystems zeigte sich bereits makroskopisch im posterioren Marklager rechts eine Substanzveränderung an der Stelle, wo man auf den T2-gewichteten MRT Hyperintensitäten sah.

In den wenigen makropathologischen Berichten, die meist ohne gleichzeitige Vorlage eines kranialen CT oder MRT durchgeführt wurden, fanden Yoshimura et al. (1990) eine leichte generalisierte Atrophie, und ebenso wie Ono et al. (1987), eine leichte bis mässige Erweiterung des Ventrikelsystems. Die autopsierten Gehirne zeigten ansonsten im Vergleich zu Kontrollen keine weiteren pathologischen Befunde.

Zusammenfassend entsprechen die in der vorgelegten Arbeit erhobenen Befunde einerseits den Befunden der anderen Autoren, geben andererseits auch weitergehende Hinweise auf den Pathomechanismus der Läsionen. Die neuropathologischen Veränderungen bei der Myotonen Dystrophie beinhalten Schädigungen im Bereich der zentralen Leitungsbahnen (Myelinisierung); es scheinen aber auch in gewissem Umfang Fasern des peripheren Nervensystems betroffen zu sein.

V.6 Neuropathologie und MRT

ödematöse Veränderungen. Elektronenmikroskopisch zeigte sich eine Erweiterung des extrazellulären Raums innerhalb der subependymalaren Strukturen, die den periventrikulären Aufhellungen in den kraniellen CT entsprachen (Mori und Raimondi, 1975; Murata et al., 1978 (1, 2); Palmieri et al., 1978). Diese Befunde führten zum Begriff der *Liquordiapedese*.

Die Studien machen deutlich, dass den periventrikulären Marklagerauffälligkeiten bei verschiedenen Grundkrankheiten pathomorphologisch unterschiedliche Läsionsformen zugrundeliegen. Gemeinsam ist ihnen, zumindest was die subependymalen Veränderungen betrifft, eine Abnahme der Faserdichte - sowohl was die Myelinstrukturen betrifft, als auch von Axonen. Die auch in der vorgelegten Arbeit berichteten gliotischen Veränderungen sind als reaktive Prozesse auf eine primäre Schädigung zu werten.

kernspintomographisch ähnlichen Bildern bei verschiedenen Krankheiten letztlich ein ähnlicher Pathomechanismus vorliegt, bleibt offen.

V.7 Abschließende Betrachtungen, Hypothesen und Ausblick

schlechtesten Blickfolgeleistung bzw. der grössten Einschränkung zu sehen; sie verfolgten das Blickziel fast ausschließlich über Aufholsakkaden. Nur bei niedrigen Reizfrequenzen waren noch andeutungsweise glatte Augenbewegungen zu sehen.

Ergänzend sei noch auf eine Arbeit verwiesen, die wie in der vorgelegten Arbeit funktionelle Daten mit Kernspintomographien und einer neuropathologischen Untersuchung von, im MRT auffälligen, Marklagerläsionen in Verbindung bringt. Die Autoren (Ogata et al., 1998) erklärten die signifikant eingeschränkten kognitiven Leistungen (Gedächtnis) ihrer Patienten mit histopathologisch deutlich sichtbaren Bahnumingerungen in kernspintomographischen Läsionen im vorderen Temporallappen. Hier durchziehen zwischen vorderem temporalen Cortex (Brodman-Areal 38) und dem Corpus amygdaloideum, einem Teil des basolateralen limbischen Systems, wichtige mit Gedächtnisleistungen assoziierte Bahnsysteme das Marklager.

Zusammenfassend hat die bei MD-Patienten signifikant schlechte Blickfolgeleistung eine zentrale Ursache, bedingt durch Läsionen wichtiger Leitungsbahnen, die Bestandteil des Blickfolgesystem sind. Neben den immer wieder berichteten allgemeinen kognitiven Defiziten dieser Patienten, kann durch die vorliegenden Ergebnisse ein spezifisches zentrales Defizit beschrieben werden: eine Störung der komplexen visuo-motorischen Funktionen.

Die Frage wie es bei der Myotonen Dystrophie zu dem Marklagerschaden bzw. den urächlichen Myelinschäden kommt, kann derzeit letztlich nur spekulativ beantwortet werden.

vernachlässiglich, dass die einzelnen Faktoren, welcher auch immer überwiegt, nur gemeinsam zu den periventrikulären Schäden führen können. Nun steht bei der Myotonen Dystrophie nicht pathologisch erhöhter intraventrikulärer Druck im Vordergrund, sondern wahrscheinlich ein besonders vulnerables Parenchym, das in der Umgebung der Seitenventrikelhörner einem besonderen ‘Stress’ ausgesetzt sein muss. Die strukturelle Veränderung auf molekularer Ebene, die letztlich zu der erhöhten Anfälligkeit der periventrikulären Gewebematrix führt, ist noch unbekannt. Eventuell kann die Molekulargenetik weiterhelfen.

VI. Zusammenfassung

Siebzehn Patienten wurden prospektiv klinisch, genetisch, elektronystagmographisch (Blickfolge, VOR, VOR-S mit Sinusreizen) untersucht, ferner 12 dieser Patienten zusätzlich mit kranieller MRT. Für die Auswertung der MRT wurde eine Methode entwickelt, die sowohl eine Bestimmung der Häufigkeit der MLH in den verschiedenen Hirnarealen, als auch eine Verknüpfung mit den Blickfolgedaten erlaubte. Dies ermöglichte eine „funktionelle Topographie des Blickfolgesystems“. Schließlich wurde das Gehirn eines MD-Patienten neuropathologisch untersucht und ein Vergleich zwischen MRT und pathologischem Befund vorgenommen.

Die Patienten zeigten eine statistisch signifikant subnormale Blickfolgeleistung und eine deutlich eingeschränkte Fähigkeit den VOR durch Fixation zu unterdrücken. In der MRT zeigten alle untersuchten Patienten MLH. Besonders betroffen waren das posteriore und das anteriore periventrikuläre Marklager. Stark reduzierte Blickfolgeleistungen korrelierten vor allem mit Läsionen im anterioren Marklager. Dies wird damit erklärt, dass Sinusreize bevorzugt die prädiktive Blickfolge testen, für die insbesondere frontale Hirnregionen wichtig sind.

Den MLH entsprachen neuropathologisch ausgedehnte Myelinschäden ungeklärter Ätiologie, wobei entzündliche und ischämische Ursachen weitgehend ausgeschlossen werden können.

VII. Literaturverzeichnis

Awad IA, Johnson PC, Spetzler RF, Hodak JA (1986). Incidental subcortical lesions identified on MRI in the elderly. II. Postmortem pathological correlations. *Stroke* 17: 1090-1097

Brook JD, McCurrach ME, Harley HG (1992). Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3’ end of a transcript encoding a protein kinase family member. *Cell 68: 799-808*

Glantz RH, Wright RB, Huckman MS, Garron DC, Siegel IM (1988). Central nervous system magnetic resonance imaging findings in myotonic dystrophy. *Arch Neurol* 45: 36-37

Klein D (1958). La dystrophie myotonique (Steinert) et la myotonie congenitale (Thomsen) en Suisse. J Genet Hum 1(suppl): 1

Danksagung

Ich danke Herrn Prof. Dr. Dr. H.C. Lücking für die Möglichkeit in der Neurologischen Universitätsklinik meine Promotion zu erlangen.

Meinem Doktorvater Herrn Prof. Dr. T. Mergner gilt mein Dank für die Überlassung des Themas, sowie die Unterstützung bei der Fertigstellung der Arbeit.

Mein besonderer Dank geht an Herr Dr. H. Kimmig für die intensive Betreuung bei der Durchführung.

Insbesondere danke ich Herrn Dr. M. Orszag, sowie Herrn Dr. K. Müller für Ihre Hilfe bei der Lösung der neuroradiologischen und neuropathologischen Fragen.

Schließlich danke ich allen Probanden, die sich zur Verfügung gestellt haben, für Ihre engagierte und geduldige Mitarbeit.
Lebenslauf

Manfred Petrick

18.11.1968 geboren in Kenzingen als Sohn von Gerhard Petrick und Elfriede Petrick, geb. Henkel

1975 - 1979 Grundschule Köndringen

1979 - 1989 Gymnasium Kenzingen

09/1991 - 06/1992 Studienjahr an der Medizinischen Fakultät der Semmelweis-Universität Budapest/Ungarn

1993 u. 1994 Präparationsassistenz im Anatomischen Institut der Medizinischen Fakultät Universität Freiburg i. Br.

Wissenschaftliche Tätigkeit

11/95-12/99 Wissenschaftliche Mitarbeit in der Arbeitsgruppe Okulomotorik bei Prof. Dr. T. Mergner an der Neurologischen Universitätsklinik Freiburg i. Br.

seit 01/99 Wissenschaftliche Mitarbeit in der Arbeitsgruppe Neuroendokrinologie bei PD Dr. J. Honegger an der Neurochirurgischen Universitätsklinik Freiburg i. Br.
Publikationen/Kongressbeiträge

